Knorr-Bremse Trials Ejector Valves to Boost Brake Cooling

Knorr-Bremse Trials Ejector Valves to Boost Brake Cooling

Post by : Amit

Engineering a New Standard in Brake System Thermal Control

Knorr-Bremse, the global leader in braking systems for rail and commercial vehicles, has embarked on a bold new direction in fluid dynamics and brake system cooling. On July 20, 2025, the company announced the pilot deployment of its new liquid-based ejector valve technology in electronic braking systems (EBS) for rail applications. The testing is currently underway in Munich, Germany.

This new class of ejector-based fluid valves uses no moving mechanical parts. Instead, they rely on the venturi effect—a principle of fluid dynamics where pressure differences generated by flow acceleration draw in secondary fluid streams. In layman’s terms, these valves can induce coolant circulation without traditional pumps or actuators, using fluid velocity alone to maintain flow across sensitive thermal zones.

Knorr-Bremse’s innovation is designed to improve the efficiency, reliability, and life span of braking system cooling modules, which are increasingly important in high-speed rail and metro networks using electronic and regenerative braking. With electronic braking systems becoming more compact and software-controlled, thermal loads are intensifying. And in this context, ejector-based cooling could quietly become one of the most important enablers of next-gen train braking safety.

Shifting From Active to Passive Cooling Principles

At the heart of the innovation is a shift from active mechanical cooling to more passive, physics-driven processes. In current electronic brake control units, particularly in hot weather or high-cycle braking conditions, electric pumps or fan-based systems are typically used to circulate coolant through the valve blocks and power modules. While effective, these mechanical systems are subject to fatigue, require periodic maintenance, and consume onboard power.

By contrast, the new ejector valves introduced by Knorr-Bremse have no motors, pistons, or seals. Instead, they are essentially static fluidic components that exploit pressure differentials to create suction—moving liquid coolant from one chamber to another through narrowed jets or nozzles, in a way that keeps heat dispersion consistent and predictable.

“This is not just about cooling,” says Dr. Lars Stegmann, Head of Thermo-Fluid Systems at Knorr-Bremse. “It’s about increasing system uptime, reducing moving parts, and minimizing energy use, all while keeping braking modules within optimal temperature ranges even during peak cycles.”

The passive design also reduces vibration-induced wear and electrical complexity. With no moving internals, failure modes are limited to blockage or corrosion—issues that are more easily detected and less catastrophic than motor failures in active systems.

Responding to Compact, High-Performance Rail Platforms

The need for more efficient, durable, and compact cooling technologies has grown as rail operators and trainset manufacturers shift toward smarter, more integrated vehicle control systems. From driverless metros to hybrid propulsion trains and regenerative braking designs, power densities are rising, and that means more thermal stress on key systems—especially braking electronics.

In systems using electronic brake control units (EBCUs), power modules, and traction interface electronics, the ability to keep the circuit boards and control logic within thermal thresholds directly impacts reliability, safety, and lifespan. Excessive heat buildup in braking power inverters can lead to throttling, degraded response times, or even emergency shutdowns in extreme conditions.

Knorr-Bremse’s ejector valves are being tested on both mainline and metro rail platforms in Europe. According to internal documents, the modules can handle temperature cycles from -40°C to +110°C and remain effective even under partial coolant loss scenarios—thanks to the self-regulating nature of venturi flow mechanics.

For rail OEMs like Alstom, Siemens Mobility, and Stadler, who are under increasing pressure to deliver smaller, more modular trainsets with longer service intervals, such technologies offer tangible value. An ejector-based valve could, for instance, eliminate an entire electric pump assembly, cutting down weight, wiring complexity, and maintenance burden.

Lower Cost of Ownership Through Design Simplicity

One of the key selling points Knorr-Bremse emphasizes is the long-term reduction in total cost of ownership (TCO). Cooling systems with moving components not only require preventive maintenance but also represent a potential point of failure. By eliminating those components, ejector-based valves reduce risk and simplify inspection routines.

The company projects that using ejector valves could extend coolant module life by up to 30% while reducing brake cooling system energy consumption by 10–12% over a five-year period. This adds up for large urban networks running hundreds of trains per day.

Moreover, without motors or actuators, these valves can be produced at scale using corrosion-resistant polymer blends or composite metals that withstand high-pressure fluid contact. Knorr-Bremse is currently collaborating with material science partners to further optimize the internal geometry and coatings for long-term resistance to scaling, pH variations, and wear.

According to Dr. Stegmann, “We are not only focused on physics but also manufacturability. The idea is to get performance that rivals active pumps, at the simplicity and reliability of a static part.”

Digital Twin Modeling and Predictive Maintenance Integration

One of the more quietly revolutionary aspects of this pilot lies in its software integration. Knorr-Bremse has tied its fluid loop simulations to the digital twin models already used in many of its train braking systems. By embedding fluid dynamics modeling into onboard control software, operators can track temperature gradients, fluid flow rates, and pressure differentials without physical sensors at every point.

This virtual instrumentation reduces the need for expensive thermal sensors and allows predictive maintenance analytics to flag early signs of blockages, scaling, or ineffective flow—even in real-time.

The feedback loop from the digital twin can also adjust valve geometries in future iterations. For example, additive manufacturing or laser sintering could enable custom flow pathways optimized for specific trainset geometries, climate zones, or duty cycles.

Knorr-Bremse has hinted that the next phase of this pilot could include 3D-printed ejector valves tailored to regional rolling stock designs—opening up a new level of design freedom previously impossible with traditional fluid circuits.

Potential Market and Regulatory Momentum

From a market perspective, the opportunity is growing. According to data from the European Railway Agency and the UIC (International Union of Railways), the number of trains equipped with high-power EBS units is expected to double by 2030, especially with the shift toward automation and regenerative energy recapture.

Meanwhile, emerging EU rail safety regulations, such as the EN 50126 and EN 45545 standards, now place greater emphasis on thermal management and fault-tolerant brake system designs. A passive, ejector-based thermal loop would offer intrinsic compliance advantages, helping train builders certify systems faster.

Environmental regulators may also favor this design. Because ejector valves eliminate the electrical draw of cooling pumps and reduce the materials needed for mounting, wiring, and operation, they have a lower carbon footprint across the lifecycle—from raw material sourcing to energy consumption and end-of-life recycling.

Passive Engineering in Motion Systems

Knorr-Bremse’s innovation is part of a broader trend in passive engineering—designing transport components that use fundamental physics rather than active control systems. From heat pipes in avionics to self-adjusting suspension bushings and now ejector fluidics, the move toward simplicity and resilience is gaining ground across mobility sectors.

While it's still early days for commercial adoption, the successful pilot of this new fluid valve could mark a turning point in how braking systems—and perhaps other high-heat components like traction inverters or battery modules—manage their thermal loads without complex, failure-prone systems.

As rail operators look for cost-effective ways to boost reliability, extend asset life, and shrink energy consumption, passive thermal management may no longer be a niche innovation. It could soon become the default.

Quiet Innovation with High-Impact Potential

Though not as headline-grabbing as driverless trains or hydrogen propulsion, Knorr-Bremse’s new ejector valve pilot underscores the kind of deep, foundational innovation that quietly transforms entire systems. By tackling a long-standing challenge—cooling high-performance brake modules—through a physics-first design, the company is not only improving performance and lowering costs, but also laying the groundwork for smarter, more robust rail systems in the years to come.

With early feedback from pilot operators reportedly positive and engineering refinements already underway, industry watchers will be keen to see how soon these ejector valves go from test tracks to standard kits in the global rail supply chain. If successful, this small component may prove to be a big leap in the way we cool, control, and conserve energy in tomorrow’s trains.

July 21, 2025 5:42 p.m. 585

Knorr-Bremse, Ejector Valves, Brake Cooling, Car

The great robotaxi gamble: future of autonomous ride-hailing
Oct. 14, 2025 11:31 p.m.
Robotaxi fleets may top 900,000 vehicles by 2035 — but technology, regulation, trust, and economics remain steep hurdles.
Read More
The Great Robotaxi Gamble: the trillion-dollar race
Oct. 14, 2025 11:26 p.m.
Robotaxi fleets may hit 900,000 vehicles by 2035. But profitability, regulation, and trust are huge hurdles in the race to replace human drivers.
Read More
Odisha’s “Mahila Su Vahak” scheme empowers women drivers
Oct. 14, 2025 11:21 p.m.
Odisha launches “Ama Su Vahak” scheme offering interest-free loans, training & EV incentives to empower women as drivers in transport sector.
Read More
Dubai debuts AI-powered trackless tram system
Oct. 14, 2025 11:17 p.m.
Dubai RTA unveils its first AI-powered trackless tram at GITEX 2025 — a railless, sensor-guided transit system aiming for flexibility
Read More
eVTOL & air taxis take flight at Dubai AirShow 2025
Oct. 14, 2025 11:14 p.m.
At AirShow 2025 in Dubai, eVTOL and urban air mobility (air taxi) concepts dominate displays, signaling accelerating momentum in vertical mobility.
Read More
smart & AW Rostamani unveil premium EVs at WETEX 2025
Oct. 14, 2025 11:11 p.m.
smart, in partnership with AW Rostamani, showcases high-performance Brabus EV variants and future mobility solutions at WETEX 2025 in Dubai.
Read More
Dubai unveils AI-powered trackless tram at GITEX 2025
Oct. 14, 2025 11:04 p.m.
Dubai RTA reveals AI-powered “Trackless Tram” using optical navigation, GPS & LiDAR—no rails, flexible paths, deployed in 8 locations.
Read More
Global Deliver-E Coalition launched for zero-emission deliveries
Oct. 14, 2025 10:57 p.m.
Major delivery platforms form Deliver-E Coalition to electrify last-mile with zero-emission two- and three-wheeler fleets globally.
Read More
Dubai to launch Elon Musk’s Loop transit by 2026
Oct. 14, 2025 10:52 p.m.
Dubai aims for Phase 1 of 17 km underground “Loop” transit by 2026. Elon Musk’s Boring Company to build the city’s next-gen mobility layer.
Read More
Sponsored
Trending News